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The article offers and justifies a method for solving a problem of optimal design of bent
rods exposed to aggressive media. The problems of such class have special place among
the problems of optimal design, which is explained by the fact that modeling corrosion
deformation in structural elements requires solving not only the equations of solid mechanics,
but also the system of differential equations describing the accumulation of geometric
damage and including stress functions. The authors analyze existing approaches to solving
these problem and problems of these approaches. On the basis of this analysis a
fundamentally different approach to solving some problems of optimal design of bending
rod elements that function in aggressive media is proposed, the statement of a problem,
the numerical solution of which requires much less computational cost, and the result is
the same as for the traditional problem statement, is proposed and justified. The authors
consider a problem of vector optimization by two criteria: minimum area and perimeter of
a cross-section at the time of exhaustion of the bearing capacity. The objective function
includes the weight coefficient o, taking into account the influence of cross-sectional
perimeter. A modified scheme for solving the optimization problem is created, which
involves a module for one-dimensional optimization by parameter . The proposed method
is based on the assumption that there is only one value of the coefficient of perimeter
influence, for which the solutions of problems in both traditional and new statements
coincide. To compare these results correctly, it is necessary for a cross-section to be
represented in both statements by a set of rectangular fragments both at an initial time and
at a time corresponding to the limit state, so the model of corroding equivalent cross-
section is used. A numerical illustration demonstrates almost complete coincidence of the
solutions for both problem statements. At the same time utilization of developed method
allows reducing the computational cost by several orders of magnitude compared to
traditional methods for solving problems of this class.
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A METHOD FOR SOLVING PROBLEMS OF BENDING ROD OPTIMIZATION TAKING

Statement of the problem

Problems of optimization of structures exposed
to aggressive media have special place among the
problems of optimal design. This is explained by the
fact that the equations of solid mechanics of are not
enough to calculate the constraint functions. The
influence of aggressive media causes destruction of
a surface layer of metal (corrosive wear) and,
consequently, changes in initial geometric
characteristics of structural elements. As noted in
many works of Ukrainian and foreign researchers,
mechanical stresses significantly accelerate the
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corrosion process [1—5]. In this case, a model of
corrosion deformation of a structure is necessary for
calculation of constraint functions. In its most general
form, it consists of a system of differential equations
(SDU) describing the accumulation of geometric
damage and including stress functions, and a system
of mechanical equations for calculation of the stress-
strain state (SSS). The dimension of a SDU is
determined by a number of parameters that allows a
researcher to find a unique solution, which defines
the geometric characteristics of a structure at any
given time. When modeling the process of corrosive
deformation in real structures, only the numerical
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solution of SDU is possible.

Thus, the problem of optimal design of
corroding structures consists of two related tasks: to
reduce computational costs and to ensure a required
accuracy of the result. Previously, these tasks were
accomplished by adapting numerical optimization
methods and methods of solving systems of
differential equations to the class of problems under
consideration, including the creation of error control
algorithms based on artificial neural networks
(ANNSs). This approach has partially solved the
problems of accuracy and efficiency, but in general
they still remain relevant.

This paper proposes a fundamentally different
approach to solving some problems of optimal design
of bending rod elements that function in aggressive
media. The authors propose and justify the statement
of a problem, the numerical solution of which
requires much less computational cost, and the result
is the same as for the traditional problem statement.

Analysis of recent research and publications

As noted above, the main ways to reduce
computational costs in solving problems of optimal
design of corroding structures were modifications of
numerical methods of mathematical programming
and methods for solving systems of differential
equations. Considering the first approach, it is
necessary to note the work [6] dedicated to the
modification of the flexible tolerance method. The
paper proposed to consider the integration step for
SDU (and, consequently, its solution error) as a
decreasing function of the iteration number in solving
the problem of mathematical programming. This
approach significantly reduced the computational
cost, especially at the initial iterations, due to the
relatively high error in the computation of constraint
functions. However, it was impossible to predict a
solution error since the influence of factors other
than integration step value remained unexplored.
These factors are the initial stress value, the
parameters of an aggressive medium and the
characteristics of cross-sections of rod elements
(shape, area and perimeter). Later in [7,8]
information about the influence of these factors on
the error of SDU solution was formalized using
artificial neural networks. The use of ANNs made it
possible to determine an integration step value for a
SDU while solving the problem, depending on the
required accuracy of a solution.

In the last decade, numerical-analytical
methods have been used in the calculation of
constraint functions [9], increasing efficiency due to
a reasonable change in the integration step in the
process of solving a SDU.

All of these modifications have improved the
efficiency of computations, which allowed the
researchers to solve a number of complex applied
problems, but in general the problem of optimal
design of corroding structures remains relevant.

A characteristic feature of bending rod elements
is that corrosion leads to a change not only in size
but also in shape of a section [9]. The reason is the
uneven distribution of stress across the height of a
section. As a result, firstly, the number of parameters
that determine the geometric characteristics of a
section at random moment of time increases, and,
secondly, for a random section, it has not yet been
possible to obtain user-friendly analytical
dependences that allow a researcher to determine
the durability of an element. In the study of such
structures, the use of the above modifications of
computational procedures is not possible.

The fact of the influence of cross-section
perimeter of a bent corroding rod on its optimal
parameters was described, for example, in [10]. In
this paper a new problem statement, which makes it
possible to determine the optimal parameters of a
rod with rectangular cross-section, was also proposed.

Formulation of the research objectives

As an object of research in this article rod
elements (beams) in conditions of pure bending
intended for operation in aggressive media are
considered. For certainty, we will consider the I-
beam. The weight optimization problem is formulated
as follows: it is required to determine the dimensions
of a beam cross-section so that its area is minimal
and for a given time a beam retains its load-bearing
capacity. In the form of a problem of nonlinear
mathematical programming, this formulation under
strength constraints has the form:

A(i) —>min; X e X,;

XD:{ieE“‘g(i):[c]—c(i,t*)ZO}. (1)

Here x=[H;By:Dg:T, " is the vector of variable
parameters; A is the cross-sectional area of a rod
element; o and [c] are the current and the limit
values of stress; t* is the specified service life.

As a model of geometric damage accumulation,
the following differential equation will be
used [11,12]:

ds,

DTl (1+ko); 8|,,=0,

(2)

where &, is the depth of corrosion damage (damage
parameter); v, is the corrosion rate in the absence of
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stress; k is the coefficient of stress influence on the
rate of corrosion process; t is time.

The possibility of using equation (2) in modeling
the processes of corrosion deformation is justified in
the monograph [9,13].

The calculation of constraint functions (CF)
involves the calculation of the stress state in a cross-
section at a given time, taking into account the
corrosion process occurring in it.

Models of corroding cross-sections under pure
bending conditions are described in detail in [9].
Main provisions necessary to solve the problem are
described below.

Two parameters are enough to determine the
size and shape of a section at given time: §, and
5, (Fig. 1).

B, 3,

Ty

Fig. 1. I-beam cross-section

The system of differential equations for these
parameters has a form:

ds,

E=V0(l+k61); 81(0)=0;
dd
d—t2=vo(l+kc52); 82(0)=0. (3)

Stresses o, and o, are calculated according to
formulas:

M (H, - 2T +25,)
%= o1 :

(4)

where a value of the cross-sectional moment of inertia
is determined as follows:

[(H,-2
1 |x(By—0,5v,t—1,55,)+
12 +(H, —2T, +23, ) x

x(Dy —0,5v,t—1,55,)

5,) (H0—2T0+281)3}<

NE)

Thus, the computation of constraint functions
in the optimization problem involves solving
numerically the system of differential equations (3)
together with the equations (4) and (5). A scheme
for solving the optimization problem is a two-circuit
scheme (Fig. 2) where OF is a module for
computation of objective function; CF is a module
for computation of constraint function; PR is a
module for recalculation of cross-sectional
parameters; NLP is a module for solutions of the
nonlinear programming problem.

e~

NLP
CF
L PR
Fig. 2. Two-circuit scheme for solving the optimization
problem

The presence of feedback significantly increases
a computational cost of solving the optimization
problem and sensitivity to errors in the calculation
of a constraint function. Nevertheless, it is possible
to obtain a strict solution of the optimization problem
only in this way.

On the other hand, an alternative approach to
solving optimization problems for corroding structures
has been used for more than 20 years. It consists in
finding an optimal solution for a neutral medium

with subsequent restoration of a sacrificial metal
layer [14] (Fig. 3).

Fig. 3. Scheme for solving the optimization problem with
separate sequential circuits
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Here SDU is a module for solving a system of
differential equations.

Variable parameters in this case are the
dimensions of a cross-section at the time of
exhaustion of the Dbearing capacity:

x=[H;;B;D Ty ]T . With regard to the object of this
study, a formulation of the problem in this approach
is the following:

A(X)—> min; Xe X,

Xb :{ie E® ‘g(i)=[6]—0(i)20} ,

In this case, the strength constraint can be used
as a coupling equation, and formally the problem
takes a form of an unconditional optimization
problem with three variable parameters. The system
of differential equations is solved only once. Despite
the fact that the advantages of this approach are
obvious from the point of view of computational
costs, it is not a complete alternative to the traditional
formulation of the problem for the following reasons.

1. In reality, the dimensions of an I-beam cross-
section are determined by the structural constraints
(the boundaries of variation of the variable
parameters) and the coupling equation (the strength
constraint), so they are not optimal in the
conventional sense of the word. Since the
constructive constraints are determined by a person
who sets a task, the only solution of the problem (6)
does not exist at all.

2. The problem statement (1) assumes that at
the initial moment of time a cross-section is
represented by rectangular fragments. Since the stress
varies linearly in a height of a cross-section, at the
moment of exhaustion of the bearing capacity it loses
its initial form (Fig. 1). Obviously, when building a
sacrificial layer of metal (solution of the system (3)
when changing the sign in the right parts) on a cross-
section, the dimensions of which will be determined
from a solution of the problem (6), at the initial
moment of time it won’t also be represented by
rectangular fragments. Therefore, it is not possible to
make a correct comparison of results obtained by solving
optimization problems in statements (1) and (6).

3. An optimal solution of the problem in the
statement (1) is significantly influenced by the
perimeter of a cross-section P, which is implicitly
included in the constraint function. The change in
the cross-sectional area AA due to corrosion will be
determined by the formula

(6)

AA=v, | ]f(1+kc(1>, t))dP dt.

P O

(7)

At the same time, the statement (6) completely
ignores this fact.

The objective of this work is to develop a
method that will allow obtaining the same results as
in the statement (1) at minimal computational cost
required to solve a problem in the formulation (6).

An outline of the main research material

We consider a problem of vector optimization
by two criteria: minimum area and perimeter of a
cross-section at the time of exhaustion of the bearing
capacity:

G(F) =0t B2,
P"-P
+( —w)w—)min;ieXD;

Xb :{ie E* ‘g(i)=[6]—c(i)20}.

Here o is the weight coefficient, taking into
account the influence of cross-sectional perimeter
(we[0;1]); P~, P*, A=, A" is, respectively, the smallest
and the largest of values that perimeter and area can
take in a given range of variable parameter values.

Same as in the statement (6), found optimal
cross-section sizes are increased by a value
corresponding to the sacrificial metal layer. Therefore,
there is a modified scheme for solving the
optimization problem, presented in figure 4, where
an additional block ODO is a module for one-
dimensional optimization by parameter o.

(8)

OoDO

NLP

— |

SDE

L

Fig. 4. A modified scheme for solving the optimization

PR

problem

The proposed method is based on the following
assumption: there is only one value of the coefficient
of perimeter influence, for which the solutions of
problems in the statements (1) and (8) coincide.
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To confirm the validity of this thesis it is
necessary to eliminate problems arising while solving
the problem in the statement (6).

Problems of constructive constraints and
ignoring the perimeter of a cross-section are
eliminated by the problem statement itself.

To compare results correctly, it is necessary
for a cross-section to be represented in both
statements by a set of rectangular fragments both at
an initial time and at a time corresponding to the
limit state. In this case, it is proposed to use a model
of corroding equivalent cross-section — a section
that at any time retains its shape, and a value of its
moment of inertia is equal to a moment of inertia of
a cross-section with a changed shape. This is achieved
by introducing a coefficient for stress averaging over
a cross-section height. In particular, for the damage
accumulation model (2), this coefficient is 0.75. A
detailed description for the model of corroding
equivalent cross-section is given in [9]. Using this
model, a system of differential equations describing
the change in size of an I-beam cross-section (Fig. 5)
takes the form:

do

d—t‘:vo(1+kcl); 8,(0)=0;

%:VO(Hkoz); 5,(0)=0;
t

do

—2= vy (1+0.75ke)): 8,,,(0) =0

dd

2eq

m =v,(1+0,5k (0, +6,)); 8,,,(0)=0. (9)

When the sacrificial metal layer is restored, signs
on the right side of the system (9) are reversed.

The cross-sectional moment of inertia for this
model is determined by the formula:

[(H,=25,)" = (H,~2T, +25,)’ |
.(10)

€q

1
:E ><(B0 —282€q)+
+(H,-2T,+28,)’ (D, -25,,)

Fig. 5. Equivalent I-beam cross-section

For a numerical illustration, a beam of I-section
was considered, and its geometric dimensions varied
in the intervals: 5.0<H<10.0 (cm), 1.0<B<4.0 (cm),

0.1<D<2.5 (cm), 1.0<T<2.5 (cm). The value of the
bending moment M=100 kN-cm, corrosion rate in
the absence of stress v,=0.1 cm/year, the coefficient
of stress influence on the corrosion rate, the ultimate
stress [6]=240 MPa. The durability of the structure
varied in the range from 1 to 5 years to evaluate the
optimal solution with varying degrees of
aggressiveness of a medium.

It is obvious that the comparison of results of
solving problems (1) and (8)—(9) is possible only
when methods of their solution guarantee a global
extremum. Since the number of variable parameters
is small, the brute force method was used in this
paper. The parameters of computational procedures
were chosen in such a way that maximum permissible
errors in solution of the system of differential
equations (9) and optimization problems themselves
in both statements were the same. In particular, a
spatial grid with the uniform distance between nodes
equal to 0.01 of the length of the change interval for
each variable parameter was used to solve the global
optimization problem by the brute force method.
The step for solving the SDE numerically was taken
to be h,=0.002t*.

The solution of the problem in the statement (1)
was taken as a reference.

In particular, for t*=5.0 years the following
optimal solution for the initial time was obtained:

X =[7,38,2,17541,2176;2,3626]' ; A=13.5117 cm.

At the time of destruction, the dimensions of the
cross-section were the following:

X, = [6, 0725;0,8679;0,1001;1,1 304]T . The maximum

stress value in the cross-section was 6,=239.99 MPa.
The analysis of the obtained solution leads to the
conclusion that an optimal design is determined,
among other factors, by a strength restriction and a
lower limit for a structural restriction on the
parameter D (Fig. 3). Similar conclusions follow
from the analysis of solutions obtained for other
values of t*.

When solving the problem in the statement (8)—
(9), the number of variable parameters of the internal
optimization problem was reduced to two due to the
use of a coupling equation and taking into account
the information obtained while solving the previous
problem.

The results of solving the internal optimization
problem are shown in table 1 for t*=5.0 years.

The bottom row of the table shows the results
of external optimization by parameter ». The internal
optimization problem was solved by the method of
parabolas.

A method for solving problems of bending rod optimization taking corrosion into account
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The discrepancy between the solution results
on the value of cross-sectional area at the initial
time was 0.32%. This result can be considered quite
satisfactory taking into account the fact that in the
numerical implementation for both statements there
were errors of the brute force method, the solution
of systems of differential equations and, for the
second formulation, the parabolas method used for
external optimization.

Table 1
Optimal solutions for different values of parameter @

A, cm’
13.62059
13.58758
13.56713
13.55690
13.55512
13.56044
13.55486

D, cm
1.22975
1.22763
1.22542
1.22313
1.22080
1.21841
1.22138

() H, cm
0.200 | 7.75717
0.220(7.62171
0.240|7.50174
0.260 | 7.39450
0.280|7.29791
0.300|7.21040
0.27517.32110

B, cm
2.14737
2.16506
2.18154
2.19697
2.21151
2.22522
2.20796

T, cm
2.22379
2.25665
2.28755
2.31682
2.34471
2.37145
2.33787

When solving the problem in the statement (1)
with the above parameters of the computational
method, SDU (9) was solved numerically
103183209 times, while in the formulation (8)—(9)
it was solved only 11 times.

In table 2 the results of solving the problem in
two statements with different values of the parameter
of medium aggressiveness vyt are shown. Here are
the optimal values of the coefficient of perimeter
influence o, the values of cross-sectional areas: A,
and A, obtained while solving problems in
statements (1) and (8)—(9) respectively, and the
values of discrepancy of the results.

Table 2
Optimal solutions for different values of parameter vt

Vot, cm [0} A, em’ | A, emt’ €, %
0.1 0.106 4.338 4.343 0.12
0.2 0.169 6.665 6.674 0.14
0.3 0214 8.327 8.342 0.18
0.4 0.248 11.196 11.226 0.27
0.5 0.275 13.512 13.555 0.32

These results confirm almost complete
coincidence of the solutions for both problem
statements.

Conclusions

A new method for solving a class of problems
of optimal design of corroding structural elements is
proposed and justified. It makes it possible to solve
the problem of search for optimum parameters of a
cross-section as a lower-dimension two-criterion

problem of unconstrained optimization (the criteria
are minimum area and perimeter of a cross-section).
The solution of this problem is followed by the
restoration of a sacrificial metal layer at a given value
of the parameter , which is the coefficient of
perimeter influence (internal optimization), and one-
dimensional optimization of this parameter (external
optimization). Analysis of the results of numerical
experiments confirms the fact of reducing the
computational cost by several orders of magnitude
compared to traditional methods for solving problems
of this class. Further increase in efficiency of the
proposed method can be achieved, according to the
authors, by approximating the dependence of the
coefficient of perimeter influence on a degree of
aggressiveness of a medium and a value of an applied
load. In this case, there is no need to solve the
problem of external optimization.
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METO/I PO3B’I3AHHA 3AJAY OTITUMI3ALIIT
3TMHHUX CTPVKHIB 3 YPAXYBAHHAM
KOPO3IMHOTI'O 3HOCY

3eaenuos JI.1., /lenucrok O.P.

Y cmammi npononyemocs i 06rpynmosyemuscsi memoo po3-
6 A3aHHA 3a0a4i ONMUMANLHOO NPOCKMYBAHHS 32UHHUX CIPUICHIB,
W0 3Hax00aMmuCsl Ni0 GNAUBOM agpecusHux cepedoguwy. 3adaui ma-
K020 KAacy 3aumaroms ocobauee micye ceped 3a0a4 ONMUMAanbHOO
NPOEeKMYBAHHS, W0 NOACHIOEMBCS MUM, W0 MOOeAI08AHHS KOPO3ill-
Hoi Deqpopmauii 6 enemeHmax KOHCMPYKYIi uMaezac po3e6 ’13aHHs He
minbKu pieHsIHb MeXaHiKu meepdoeo mina, ase i cucmemu ougepen-
YIanbHUX PIGHSAHb, W0 ONUCYIOMb HAKONUYEHHS 2e0MeMPUHHUX NO-
WK00JCeHb | 6KArUaoms 6 cebe QyHKyii Hanpyucens. Asmopu ana-
2i3yromb iCHyro4i nioxodu 0o po36 ’a3auHsa nodibHux 3ada i npobie-
MU, Wo sUHUKAOmMb npu ix eukopucmarni. Ha ocrnogi éuxonanoeo
aHanizy 3anponoHO8aHO NPUHUUNOBO THWIUL NIOXI0 00 p036 93aHHS
desKux 3a0a4 ONMUMAAbHO20 NPOCKMYBAHHS 32UHHUX CIPUICHEBUX
enemMenmia, ujo YHKUioHyIoms @ azpecusHux cepedosuuax, a ma-
KOJIC 3anpOnOHO8AHO i 0OTPYHMOBAHO NOCMAHOBKY 3a0ati, uuce-
AbHUL PO36 30K AKOI 8UMazae Habazamo MeHuux 004UCA08ANbHUX
eumpam, a pe3yasbmam 30ieaemucs 3 mpaoulyitiHor HOCMAHOBKOH).
Aemopu po3ersdaroms 3a0a4y éeKkmopHoi onmumizayii 3a deoma
Kpumepiamu: MiHIMAAbHOI NAOWI | nepumempa nonepeuHo2o nepe-
i3y 6 Momenm euuephanHs Hecy4oi 30amuocmi. llinvoea gynkuyis
eKAHaE 6 cebe 6ac08ull KoepiyieHm @, wo 8paxoye enaug nepu-
Mempa nonepeurozo nepepizy. Cmeopena modugikoseana cxema po3-
6’13anHs 3a0a4i onmumizayii, wo éKa4ae Mooyab 00HOBUMIPHOT
onmumizayii 3a napamempom w. 3anponoHo8anuil cnocio 3acHosa-
HULl Ha NPURYUWEHHI, W0 ICHYE MIiAbKU 00He 3HaYeHHs Koegiyieuma
6NAUBY NEpUMempa, NPuU KoMy p036 I3Ku 3a0a4i K 6 mpaduyiliHiil,
mak i 6 HOgill nocmanoskax 3biearomocs. /s npasusvHoeo no-
DIGHAHHS YUX pe3yabmamie HeoOXiOHo, w06 nepepiz 6y10 HaAd0aHo 6
000X NOCMAHOBKAX HAOOPOM NPAMOKYMHUX (pasmeHmie sk 6 no-
YAMKOBULI MOMEHmM Yacy, max i 6 MoMeHm, wo 8ionogioac epanu-
YHOMY CMAHY, MOMY BUKOPUCMOBYEMbCA MOOeab KOPOOYIOU020
ekesisarenmnoeo nepepisy. Yuceavna intocmpayis demoHcmpye
Mmatiyce nosHui 30ie po3e’a3kie 0aa 000X nocmanosok 3adaui. Y

motl Jce 4ac, 8UKOPUCMAHHS PO3POOAEH020 MemOody 0038045€ 3HU-
3Umu 004UCAOBANbHI BUMPAMU HA KiNbKA NOPSOKIE 6 NOPIGHIHHI 3
MpaouyiiHumMu Memooamu po3e a3aHHs 3a0a4 yb02o KAAacy.

Kimouosi ciioBa: ontuManbHe MpPOEKTYBAaHHSI, arpecuBHE
cepenoBUlIe, MOJIEJNb KOPOLYIOUOTro mepepisy, cucrema
nudepeHIiaIbHUX PiBHSHb.

METO/I PEHIEHUS 3ATAY OITUMM3ALINN
MN3TNBAEMbBIX CTEP2KHEU C YYETOM
KOPPO3MMOHHOI'O U3HOCA

3eaenuos JI.1., /lenucrwok O.P.

B cmamve npedaaecaemcs u obocnoswisaemes memoo peuie-
HUSL 3a0a4U ONMUMAALHO20 NPOEKMUPOGAHUS U32UOAeMbIX CIEDIIC-
Hell, N008epICeHHbIX 8030eliCMBUI0 aepecCUsHbIX cped. 3adavu ma-
K020 KAacca 3aHUMaiom 0coboe Mecmo cpedu 3a0a4 ONMUMAnbHO20
NPOEKMUPOBAHUsl, YMO 00BACHACMCS meM, 4mo MOO0eAUpOsaHue
KOPPO3UOHHOU Oehopmayuu @ s1emMeHmax KOHCmpyKyuu mpedyem
DeuleHUs. He MOAbKO YPAGHEHUTI MeXAHUKU MEeepdo2o mead, HO U
cucmembl OUpGepeHyUaIbHbIX YPAGHEHUI, ONUCLIBAUWUX HAKON-
JleHUe 2eOMeMPUHECKUX NOBPENCOeHUL U KAUANWUX 6 ce0s (yH-
Kyuu HanpsoiceHuti. AGmopvl aHaAu3upyrom cyuecmeyrouue noo-
X00bl K peuleHur0 n000OHbIX 3a0a4 U 603HUKAROWUE NPU UX UCNOAb-
306anuu npobaemsl. Ha ocnose nposedennoeo anaauza npeonodicen
NPUHYURUAABHO UHOU NOOX00 K DeuleHUI0 HeKOMOopbIX 3a0a4 ONmu-
MAAbHO20 NPOEKMUPOBAHUS U3UOACMBIX CIEDIICHEBBIX INEMEHMO8,
DYHKUUOHUPYIOUUX 6 AePeCcCUBHBIX CPedax, a makKjice npediojNceHa
U 000CHO8AHA NOCMAHOBKA 3A0a4U, HUCAEHHOE peuleHue KOMOopoul
mpe@yem 20pa300 MeHbUUX GLIYUCAUMENbHBIX 3aMPaAm, a pe3yib-
mam coenadaem ¢ mpacuyUoHHOU NOCMAKOBKOLL. A6mopsl paccmam-
puUsarom 3a0avy 6eKmMopHOU ONMUMU3AUUU NO 08YM KPUMEDUSM:
MUHUMAALHOU NAOWA0U U NepUMempy HONePeyHO20 Ce4eHUsl 6 MO~
Menm ucuepnanus Hecyujeti cnocoonocmu. Lleneeas gynkyus exio-
uaem 6 cebs 6eco60l KOdpuyuenm o, y4UmMolearowull 61usHue
nepumempa nonepeuroeo cevenus. Cozdana modupuyuposannas
cxema peuwleHus 3a0a4u ONMUMUZAUUL, BKAKUAIOWAS MOOYAb 00-
HOMepHOU onmumu3ayuu no napamempy w. Ilpedracaemuili cnoco6
OCHOBAH HA NPEONOAONCEHUU, YO CYUECmEyem MoabKo 00HO 3HA-
YeHue KoIguyuenma eausHUs nepuUMempa, npu Komopom peuie-
HUs 3a0a4u KaK 6 mpacuyuoHHol, MmaK U 6 HO8OU NOCMAHOBKAX
coenadatom. JIns npaguabHo20 CPAGHEHUS IMUX Pe3YAbMAMOE He-
06x00uM0, umobbl ceverue Obl10 NPpedcmasneHo 6 06eux nocmaHog-
Kax HabopoM npsamoYyeonbHbiX (PPasMeHmos KaK 6 HauaabHbll MO-
MeHm 8peMeHU, MAK U 6 MOMEHM, COOMEEMCMEYIouUli npedesbHO-
MY COCOSIHUIO, NOIMOMY UCHOAB3YEeMCs MOOeAb KOPPOOUpYHUe2o
9KeUsaNeHMH020 ceverus. Quciennas uirrocmpayus deMoHcmpu-
pyem noumu noaHoe cO8nadeHue peuerut 0 00eux NoCMaHo8oK
3ada4u. B mo sce epems, ucnoavzosanue papabomarHo2o memooa
10360151€M CHU3UMb GbIYUCAUMENbHbIE 3AMPANbL HA HECKOAbKO HO-
DAOKO06 NO CPAGHEHUIO ¢ MPAOUYUOHHBIMU MemO0aMU PeleHus 3a-
day amoeo kaacca.

KawoueBbie ciaoBa: onTuMajbHOE TMPOEKTUPOBaHME,
arpeccrMBHas cpefia, MOJEJIb KOPPOAUPYIOLIETO CEUYEHUSI, CUCTEMa
nrddepeHIIMaNTbHBIX ypaBHEHUI.
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A METHOD FOR SOLVING PROBLEMS OF BENDING
ROD OPTIMIZATION TAKING CORROSION INTO
ACCOUNT

Zelentsov D.G., Denysiuk O.R.

Ukrainian State University of Chemical Technology, Dnipro,
Ukraine

The article offers and justifies a method for solving a problem
of optimal design of bent rods exposed to aggressive media. The
problems of such class have special place among the problems of
optimal design, which is explained by the fact that modeling corrosion
deformation in structural elements requires solving not only the
equations of solid mechanics, but also the system of differential
equations describing the accumulation of geometric damage and
including stress functions. The authors analyze existing approaches
to solving these problem and problems of these approaches. On the
basis of this analysis a fundamentally different approach to solving
some problems of optimal design of bending rod elements that function
in aggressive media is proposed, the statement of a problem, the
numerical solution of which requires much less computational cost,
and the result is the same as for the traditional problem statement, is
proposed and justified. The authors consider a problem of vector
optimization by two criteria: minimum area and perimeter of a cross-
section at the time of exhaustion of the bearing capacity. The objective
Sfunction includes the weight coefficient o, taking into account the
influence of cross-sectional perimeter. A modified scheme for solving
the optimization problem is created, which involves a module for
one-dimensional optimization by parameter . The proposed method
is based on the assumption that there is only one value of the coefficient
of perimeter influence, for which the solutions of problems in both
traditional and new statements coincide. To compare these results
correctly, it is necessary for a cross-section to be represented in both
statements by a set of rectangular fragments both at an initial time
and at a time corresponding to the limit state, so the model of corroding
equivalent cross-section is used. A numerical illustration demonstrates
almost complete coincidence of the solutions for both problem
statements. At the same time utilization of developed method allows
reducing the computational cost by several orders of magnitude
compared to traditional methods for solving problems of this class.

Keywords: optimal design, aggressive medium, model of
corroding cross-section, system of differential equations.
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