
12

Kodola G.N., Denysiuk O.R., Khrebet M.A.

ISSN 2521-6406, Kompûterne modelûvannâ: analiz, upravlinnâ, optimizaciâ, 2018, No. 1, pp. 12-17

© Kodola G.N., Denysiuk O.R., Khrebet M.A., 2018

UDC 004.94

Kodola G.N., Denysiuk O.R., Khrebet M.A.

ABOUT PROCEDURAL GENERATION OF THE CONTENT AND ITS USE AT THE
CREATION OF COMPUTER GAMES

Ukrainian State University of Chemical Technology, Dnipro

Procedural generation of content is crucial when creating various elements of computer

games, such as game levels, buildings, textures, weapons, faces of non-player characters,

trees, bushes, etc. Procedural generation is understood as a process of automatic creation

of various parts of a game by mixing various input data. In the paper this process is

demonstrated by the example of modeling of a room with different dimensions and different

number of outputs. In case of proper implementation, it is possible to base more than 90%

of a game on procedural generation of content, which saves a significant amount of

memory used for content storage. The paper presents a brief overview of the first systems

of game generation, their development path from participation in the creation of small

levels to participation in the creation of whole games. One of the first games based on the

use of procedural generation was Rogue, which spawned a whole genre called roguelike.

The paper considers examples of the successful application of various procedural generation

algorithms in games of different genres such as: complex dynamic relationships in Crusader

Kings II; unique enemies in Shadow of Mordor; procedural generation of the world in

Civilization. Examples of use of procedural generation in other spheres, such as modeling

3D objects, or work of artists, are given. The algorithm for procedural generation of the

game level is developed. A level is constructed from the cells depending on various options

for constructing the level – with clear and free boundaries, the formation of the cells with

possible output options, constructing their set and implementing the passages between

neighboring cells. The implementation of the proposed algorithm for procedural generation

of a level built on cells will allow creating a universal program for the formation of various

levels (maps) and can be further integrated into the game, which saves considerable time

and resources.

Keywords: procedural content generation, computer game, algorithm, game level, universal

game programs.

Problem statement
In the modern gaming industry procedural

generation is used so often that its various
manifestations can be seen in almost every game of
any genre. Procedural generation is an algorithm that
can create game content independently and without
direct human involvement. In simple terms,
procedural generation is a process of creating
something by mixing various input data in different
ways. As a result of this mixing, with a proper variety
of input data, we can get a unique product.

The procedural generation can be widely used
in the process of game development, for example
when creating:

– game levels;
– buildings;

– textures;
– weapon;
– faces of non-player characters;
– trees, bushes, etc.
The implementation of algorithms for

procedural content generation has practical
importance, since the solution of this task will not
only significantly diversify computer games by
creating completely new game mechanisms and
genres, but also significantly save the amount of
memory used for content storage.

Analysis of recent research and publications
Research in the field of universal game programs

was primarily focused on the study of artificial
intelligence algorithms, and the generation of games
either was not considered in these works at all, or

About procedural generation of the content and its use at the creation of computer games

13ISSN 2521-6406, Kompûterne modelûvannâ: analiz, upravlinnâ, optimizaciâ, 2018, No. 1, pp. 12-17

was based on the simplest algorithms.
The works of C. Browne [1], V. Hom and

J. Marks [2], J. Togelius [3], M. Cook [4] are devoted
to research on procedural generation of games.
Existing experimental solutions are focused on the
generation of games of several separate genres.

A promising direction for further research is to
improve existing and create new generation
algorithms in order to improve quality and variety of
generated games.

Formulation of the research objective
The objective of the paper if to perform a review

and analysis of research on the procedural generation
of content and its use in the creation of computer
games, to propose an algorithm for procedural
generation of a game level.

Exposition of the main material of the study
With proper implementation, more than 90%

of the entire game can be built on procedural content
generation [5].

To understand what procedural generation is,
consider a simple example. As such, let us examine
the algorithm for the procedural generation of a small
room.

There are input data – the size of a room and
the number of doors. After this, a procedural
generation algorithm is developed, which will
randomly mix these two parameters. As a result, after
starting the generation algorithm, one of the possible
variants of room design is obtained as an output.
For example, if the room size can be 20 m2, 30 m2

or 40 m2, and the number of doors can be 1, 2 or 3,
the output of the algorithm will be one of 9 possible
options.

Thus, the programmer, using a small amount
of input data, can generate a huge number of different
unique rooms. 9 possible options from the example
were obtained only with the use of 2 input parameters,
and in case of full algorithm of procedural generation
that can have more than 100 different incoming
parameters, each of which has the same number of
possible values, the number of possible outputs can
be enormous. That’s why procedural generation has
earned itself such a popularity among ordinary players
and developers who create games.

The undoubted advantage of procedural content
generation is the amount of memory used. In the
example above, storage of all 9 possible rooms in
memory will take, for example, 90 kilobytes. But
the storage of the algorithm for procedural generation
of these rooms in the memory can take around 20
kilobytes. Thus, we can say that the use of procedural
generation algorithms perfectly saves device
memory [6].

Development of procedural generation algorithms
The first widely known applications of

procedural generation date back to the early 1980s,
when with limited resources of computers it was
already possible to create large and diverse worlds.
Typical examples are Rogue and Elite.

Rogue, in turn, became so popular that it has
spawned an whole genre based on procedural
generation used in it. Subsequently, this genre would
be called Roguelike. An integral part of any roguelike
game is the presence of randomly generated levels,
which players will explore.

It has already been a long time since the early
1980”s, and during this time, procedural generation
algorithms have come a long way from participating
in the creation of small levels to participating in the
creation of whole games. So, due to the development
of procedural generation, such games as Diablo,
Spore, Borderlands, Don’t Starve and many others
were created [7,8].

After release of Rogue, other games of this type
began to appear much later, but procedural
generation in them has also reached a completely
different level. For example, in Diablo, released in
1996, the mechanic of procedural generation was
used to create levels, enemies and even weapons.

Another excellent example of introducing
procedural generation into the game is Spore, released
in 2008. In this game, literally everything is created
based on the mechanics of procedural generation –
from the creation of non-game creatures, to the
buildings where they live and the entire their planets.

A newer example of such a game is No Man’s
Sky, where an entire galaxy is created by procedural
generation algorithms, with unique planets and
animals to be explored by the player.

As a result, it can be said that games completely
based on the mechanics of procedural generation
appear more often, and their scales are increasing [8].

Algorithms for procedural generation are
fundamentally different, depending on an area in
which they are used. For example, in computer games
algorithms can be responsible for the generation of
game levels (Diablo, Heroes of Might and Magic),
the generation of random weapons (Diablo,
Borderlands), names of non-player characters and
enemies (Diablo, S.T.A.L.K.E.R.).

Some examples of the successful application
of various procedural generation algorithms in games
of different genres are given below:

1. Complex dynamic family ties in Crusader
Kings II:

With the help of procedural generation,
characters of the strategy Crusader Kings II set in

Kodola G.N., Denysiuk O.R., Khrebet M.A.

14 ISSN 2521-6406, Kompûterne modelûvannâ: analiz, upravlinnâ, optimizaciâ, 2018, No. 1, pp. 12-17

the Middle Ages become unique, though computer-
controlled, personalities. Various traits, such as
intrigue or greed, passing through the algorithm of
procedural generation, determine the future behavior
of a character and his relationship with others.

2. Unique enemies in Shadow of Mordor:
In this game, based on The Lord of the Rings

by J.R.R. Tolkien, the main enemy for the player
are orcs, created using procedural generation. Using
the Nemesis System algorithm, when creating a new
enemy, data such as name, appearance, manner of
speaking and even relationships with other orcs is
taken into account. Combining so many different
parameters allows the game to create more and more
new combinations of enemies with their own
characteristics. Also, after participating in battles,
some orcs may obtain procedurally generated scars,
or they may be promoted by awarding a new rank.
All this creates the impression that the player is
surrounded by unique, detailed enemies.

3. Procedural generation of the world in
Civilization:

The use of procedural generation in creation
of new maps allows the developers to significantly
diversify the game process, because each subsequent
map is not similar to the previous one – it encourages
players to explore a new game space, and also does
not let the game to become boring.

However, procedural generation has found its
use not only in games. For one thing, it is often
used as a tool in modeling. An example is a simple
algorithm for procedural generation of a 3D tree
model. In this algorithm, a stem is taken as the basis
of a future tree, to which, as the algorithm progresses,
different, procedurally created branches are attached,
and the leaves, in turn, are attached to those
branches. Such an algorithm allows designers to save
their time significantly, as well as to achieve the
unlikeness of all trees, as it happens with trees in
real life [9,10].

Artists who work on creating different textures
also appreciate procedural generation. There are two
ways to create textures – creating a texture manually
or using photos as a basis for a future texture. An
artist can also combine these two methods. Both

methods are very labor-intensive, because they require
a lot of time and effort to provide the final version.
On the other hand, with the help of algorithms of
procedural generation it is possible to create textures,
which almost do not require any finalization. And
when creating similar textures, it’s enough to just
replace several parameters of input data in the
algorithm. An artist can not do this using any other
method.

Development of the procedural generation
algorithm

For clarity, we can consider a simple algorithm
for procedural generation of a game level, which is
constructed from cells [11,12].

First you need to decide how the final level
will look. There are two possible options for its design
– with clear or free boundaries. They are provided
in Figures 1 and 2, respectively.

Fig. 1. Level design with clear boundaries

The option with clear level boundaries assumes
much less variation in the level design, and therefore
the second option is chosen.

After the style of level design is chosen, it is
necessary to decide whether cells of a level will be
different, or will they be flat fields. Since the given
example can then be used in a game, the first option
is selected. On the stage of the development of cells,
the question of their implementation arises. There
are two possible options:

– to create a set of cells that will be randomly
selected and set to the level;

– to write a separate algorithm of procedural
cell generation for the level.

The second option assumes greater uniqueness

Fig. 2. Level design with free boundaries

About procedural generation of the content and its use at the creation of computer games

15ISSN 2521-6406, Kompûterne modelûvannâ: analiz, upravlinnâ, optimizaciâ, 2018, No. 1, pp. 12-17

of each of the created cells, and therefore the level
as a whole, but it requires a lot of effort to implement,
and therefore the choice falls on the first option.
Then it is necessary to create a set of cells, from
which the level will be built.

If there are too few created cells, they will often
repeat at the level. It is also crucial to figure out
how to implement a system of passes between
neighboring cells. Again, there are two solutions:

– to create a large number of cells with all
possible variants of passages, so that each cell can
be placed in a specific place, depending on the
connection with other cells;

– to create several cells, and to write a function
that will rotate the cells and change the number of
passages depending on where the cell needs to be
placed.

If we use the first method, we will have to
manually create many unique cells: 4 cells with one
passage, 2 cells with I-shaped passages (Fig. 3), 4
cells with L-shaped passages (Fig. 4), 4 cells with
T-shaped passages (Fig. 5), and 1 cell with passages
on each side of the cell. It turns out that Totally it’s
necessary to create 15 unique cells, and as a result
each turn will look the same as the previous one.

Fig. 3. Two cells with I-shaped passages

Fig. 4. Four cells with L-shaped passages

Fig. 5. Four cells with T-shaped passages

The second option looks more attractive, since
it is possible to create several cells and a function
that will rotate them and change the number of
passages. Thus, if you create a cell that has passages
on each side, the function will be able to change it
and leave, for example, only two of them. This will
introduce a small element of randomness into the
level, and therefore it is decided to use the second

option.
So, after combining all the steps together, we

can say that the algorithm for procedural level
generation is almost ready. Åhere will be only
cosmetic changes and work on possible errors.

Thus, the example of an algorithm for
procedural generation of a level built on cells was
considered. With further work, this procedural
generation algorithm can be integrated into the game.

Conclusions
As it was shown in the paper, procedural

content generation has found its niche in many areas
of game development. It saves a lot of time and
resources. As a result, it can be said that procedural
generation has already reached great heights, but
still has not reached its limit. And soon enough the
procedural generation algorithms will reach such a
scale that they will be used not only in games, but
also in other spheres of human activity, for example,
in education or military affairs. In games, procedural
generation has almost reached its peak, because you
can already see games that are completely built using
procedural mechanics. However, it is still not a limit.

Current paper presents the development of the
algorithm for procedural generation of a game level,
which is constructed from cells depending on various
versions of the level construction – with clear or
free boundaries, the formation of cells with possible
output options, constructing their set and
implementing the passages between neighboring cells.
The implementation of the proposed algorithm for
procedural generation of a level built on cells will
allow creating a universal program for the formation
of various levels (maps) and can be further integrated
into the game, which saves considerable time and
resources.

REFERENCES

1. Browne C. Evolutionary Game Design. – Berlin:

Springer, 2011. – 122 p.

2. Hom V., Marks J. Automatic Design of Balanced Board

Games // Proceedings of the Third Artificial Intelligence and

Interactive Digital Entertainment Conference. – 2007. – Ð.25-

30.

3. Togelius J., Schmidhuber J. An Experiment in Automatic

Game Design // IEEE Symposium on Computational Intelligence

and Games. – 2008. – Ð.111-118.

4. Cook M., Colton S. Multi-Faceted Evolution Of Simple

Arcade Games // IEEE Conference on Computational Intelligence

and Games. – 2011. – Ð.289-296.

5. Shaker N., Togelius J., Nelson Mark J. Procedural

Content Generation in Games. – Springer, 2016. – 218 p.

Kodola G.N., Denysiuk O.R., Khrebet M.A.

16 ISSN 2521-6406, Kompûterne modelûvannâ: analiz, upravlinnâ, optimizaciâ, 2018, No. 1, pp. 12-17

6. Texturing and Modeling: A Procedural Approach, Third

Edition / Ebert David S., Musgrave F. Kenton, Peachey D. and

etc. – Morgan Kaufmann, 2002. – 688 p.

7. Hendrikx M., Meijer J.S., Van Der Velden A.I. Procedural

Content Generation for Games: A Survey // ACM Transactions

on Multimedia Computing, Communications, and Applications.

– Feb. 2013. – Vol.9. – No. 1. – Ð.1-22.

8. Togelius J., Yannakakis G.N., Stanley K.O., Browne C.

Search-Based Procedural Content Generation: A Taxonomy and

Survey // IEEE Transactions on Computational Intelligence and

AI in Games. – Sept. 2011. – Vol.3. – No. 3. – Ð.172-186.

9. Yannakakis G.N. Experience-Driven Procedural Content

Generation // IEEE Transactions on Affective Computing. –

July 2011. – Vol.2. – No. 3. – Ð.147-161.

10. Sorenson N. A Generic Approach to Challenge

Modeling for the Procedural Creation of Video Game Levels //

IEEE Transactions on Computational Intelligence and AI in

Games. – Sept. 2011. –Vol.3. – No. 3. – Ðp.229-244.

11. Martin A. Evolving 3D Buildings for the Prototype

Video Game Subversion // Proceedings of the 2010 International

Conference on Applications of Evolutionary Computation. – Nov.

2010. – Vol.6024. – Ð.111-120.

12. Ashlock D. Search-Based Procedural Generation of

Maze-Like Levels // IEEE Transactions on Computational

Intelligence and AI in Games. – Sept. 2011. – Vol.3. – No. 3. –

P.260-273.

Received 14.04.2018

ÏÐÎ ÏÐÎÖÅÄÓÐÍÓ ÃÅÍÅÐÀÖ²Þ ÊÎÍÒÅÍÒÓ ÒÀ ¯¯
ÂÈÊÎÐÈÑÒÀÍÍ² ÏÐÈ ÑÒÂÎÐÅÍÍ² ÊÎÌÏ’ÞÒÅÐÍÈÕ
²ÃÎÐ

Êîäîëà Ã.Ì., Äåíèñþê Î.Ð., Õðåáåò Ì.Î.

Ïðîöåäóðíà ãåíåðàö³ÿ êîíòåíòó º îäí³ºþ ç íàéá³ëüø àê-
òóàëüíîþ ïðè ñòâîðåíí³ ð³çíèõ åëåìåíò³â êîìï’þòåðíèõ ³ãîð,
òàêèõ ÿê ³ãðîâ³ ð³âí³, áóä³âë³, òåêñòóðè, çáðî¿, îñ³á íå³ãðîâèõ
ïåðñîíàæ³â, äåðåâ, êóù³â òà ³í. Ï³ä ïðîöåäóðíîþ ãåíåðàö³ºþ
ðîçóì³þòü ïðîöåñ àâòîìàòè÷íîãî ñòâîðåííÿ ð³çíèõ ñêëàäîâèõ
÷àñòèí ãðè øëÿõîì «çì³øóâàííÿ» ì³æ ñîáîþ ð³çíèõ âõ³äíèõ
äàíèõ, ùî äåìîíñòðóº ðîçãëÿíóòèé â ñòàòò³ íàî÷íèé ïðèêëàä
ìîäåëþâàííÿ ê³ìíàòè ð³çíèõ ðîçì³ð³â ç ð³çíîþ ê³ëüê³ñòþ âè-
õîä³â. Ïðè ïðàâèëüí³é ðåàë³çàö³¿ íà ïðîöåäóðí³é ãåíåðàö³¿ êîí-
òåíòó ìîæå áóòè ïîáóäîâàíî á³ëüøå 90 % âñ³º¿ ãðè, ùî äîçâî-
ëÿº çíà÷íî çàîùàäèòè îáñÿã âèêîðèñòîâóâàíî¿ ïàì’ÿò³ äëÿ çáå-
ð³ãàííÿ êîíòåíòó. Ó ðîáîò³ íàäàíèé êîðîòêèé îãëÿä ïåðøèõ
ñèñòåì ãåíåðàö³¿ ³ãîð, ¿õ øëÿõ ðîçâèòêó â³ä ó÷àñò³ â ñòâîðåíí³
íåâåëèêèõ ð³âí³â, äî ó÷àñò³ â ñòâîðåíí³ ö³ëèõ ³ãîð. Îäí³ºþ ç
ïåðøèõ ³ãîð çàñíîâàí³é íà âèêîðèñòàíí³ ïðîöåäóðíî¿ ãåíåðàö³¿
áóëà ãðà Rogue, ÿêà ïîðîäèëà ö³ëèé æàíð, òàê çâàíèé Roguelike,
òîáòî Rogue-ïîä³áí³. Ðîçãëÿíóòî ïðèêëàäè âäàëîãî çàñòîñó-
âàííÿ ð³çíèõ àëãîðèòì³â ïðîöåäóðíî¿ ãåíåðàö³¿ â ³ãðàõ ð³çíèõ
æàíð³â, òàêèõ ÿê: ñêëàäí³ äèíàì³÷í³ ðîäèíí³ çâ’ÿçêè â Crusader

Kings II; óí³êàëüí³ âîðîãè â Shadow of Mordor; ïðîöåäóðíà ãåíå-
ðàö³ÿ ñâ³òó â Civilization. Íàâåäåí³ ïðèêëàäè âèêîðèñòàííÿ ïðî-
öåäóðíî¿ ãåíåðàö³¿ â ³íøèõ ñôåðàõ, òàêèõ ÿê ìîäåëþâàííÿ
3D-îá’ºêò³â, ðîáîòà õóäîæíèê³â. Íàäàíà ðîçðîáêà àëãîðèòìó
ïðîöåäóðíî¿ ãåíåðàö³¿ ³ãðîâîãî ð³âíÿ, ÿêèé áóäóºòüñÿ ç êë³òèí â
çàëåæíîñò³ â³ä ð³çíèõ âàð³àíò³â ïîáóäîâè ð³âíÿ – ç ÷³òêèìè ³
â³ëüíèìè ìåæàìè, ôîðìóâàííÿ ñàìèõ êë³òèí ç ìîæëèâèìè âà-
ð³àíòàìè âèõîä³â, ïîáóäîâè ¿õ íàáîðó ³ ðåàë³çàö³¿ ïðîõîä³â ì³æ
ñóñ³äí³ìè êë³òèíàìè. Ðåàë³çàö³ÿ çàïðîïîíîâàíîãî àëãîðèòìó
ïðîöåäóðíî¿ ãåíåðàö³¿ ð³âíÿ, ïîáóäîâàíîãî íà êë³òèíàõ, äîçâî-
ëèòü ñòâîðèòè óí³âåðñàëüíó ïðîãðàìó ôîðìóâàííÿ ð³çíèõ ð³âí³â
(êàðò) ³ ìîæå áóòè â ïîäàëüøîìó ³íòåãðîâàíà â ãðó, ùî äîçâî-
ëÿº çíà÷íî çàîùàäèòè ÷àñ ³ ðåñóðñè.

Êëþ÷îâ³ ñëîâà: ïðîöåäóðíà ãåíåðàö³ÿ êîíòåíòó,
êîìï’þòåðíà ãðà, àëãîðèòì, ð³âåíü ãðè, óí³âåðñàëüí³ ³ãðîâ³
ïðîãðàìè.

Î ÏÐÎÖÅÄÓÐÍÎÉ ÃÅÍÅÐÀÖÈÈ ÊÎÍÒÅÍÒÀ È ÅÅ
ÈÑÏÎËÜÇÎÂÀÍÈÈ ÏÐÈ ÑÎÇÄÀÍÈÈ
ÊÎÌÏÜÞÒÅÐÍÛÕ ÈÃÐ

Êîäîëà Ã.Í., Äåíèñþê Î.Ð., Õðåáåò Ì.À.

Ïðîöåäóðíàÿ ãåíåðàöèÿ êîíòåíòà ÿâëÿåòñÿ îäíîé èç íàè-
áîëåå àêòóàëüíîé ïðè ñîçäàíèè ðàçëè÷íûõ ýëåìåíòîâ êîìïüþ-
òåðíûõ èãð, òàêèõ êàê èãðîâûå óðîâíè, çäàíèÿ, òåêñòóðû, îðó-
æèÿ, ëèö íåèãðîâûõ ïåðñîíàæåé, äåðåâüåâ, êóñòîâ è äð. Ïîä
ïðîöåäóðíîé ãåíåðàöèåé ïîíèìàþò ïðîöåññ àâòîìàòè÷åñêîãî
ñîçäàíèÿ ðàçëè÷íûõ ñîñòàâëÿþùèõ ÷àñòåé èãðû ïóòåì «ñìå-
øèâàíèÿ» ìåæäó ñîáîé ðàçëè÷íûõ âõîäíûõ äàííûõ, ÷òî äåìîí-
ñòðèðóåò ðàññìîòðåííûé â ñòàòüå íàãëÿäíûé ïðèìåð ìîäåëè-
ðîâàíèÿ êîìíàòû ðàçëè÷íûõ ðàçìåðîâ ñ ðàçíûì êîëè÷åñòâîì
âûõîäîâ. Ïðè ïðàâèëüíîé ðåàëèçàöèè íà ïðîöåäóðíîé ãåíåðàöèè
êîíòåíòà ìîæåò áûòü ïîñòðîåíî áîëåå 90% âñåé èãðû, ÷òî
ïîçâîëÿåò çíà÷èòåëüíî ñýêîíîìèòü îáúåì èñïîëüçóåìîé ïàìÿ-
òè äëÿ õðàíåíèÿ êîíòåíòà. Â ðàáîòå ïðåäñòàâëåí êðàòêèé
îáçîð ïåðâûõ ñèñòåì ãåíåðàöèè èãð, èõ ïóòü ðàçâèòèÿ îò ó÷à-
ñòèÿ â ñîçäàíèè íåáîëüøèõ óðîâíåé, äî ó÷àñòèÿ â ñîçäàíèè öå-
ëûõ èãð. Îäíîé èç ïåðâûõ èãð îñíîâàííîé íà èñïîëüçîâàíèè ïðî-
öåäóðíîé ãåíåðàöèè áûëà èãðà Rogue, êîòîðàÿ ïîðîäèëà öåëûé
æàíð, íàçûâàåìûé Roguelike, òî åñòü Rogue-ïîäîáíûå. Ðàñ-
ñìîòðåíû ïðèìåðû óäà÷íîãî ïðèìåíåíèÿ ðàçëè÷íûõ àëãîðèò-
ìîâ ïðîöåäóðíîé ãåíåðàöèè â èãðàõ ðàçíûõ æàíðîâ, òàêèõ êàê:
ñëîæíûå äèíàìè÷åñêèå ðîäñòâåííûå ñâÿçè â Crusader Kings II;
óíèêàëüíûå âðàãè â Shadow of Mordor; ïðîöåäóðíàÿ ãåíåðàöèÿ
ìèðà â Civilization. Ïðèâåäåíû ïðèìåðû èñïîëüçîâàíèÿ ïðîöå-
äóðíîé ãåíåðàöèè â äðóãèõ ñôåðàõ, òàêèõ êàê ìîäåëèðîâàíèå
3D-îáúåêòîâ, ðàáîòà õóäîæíèêîâ. Ïðåäñòàâëåíà ðàçðàáîòêà
àëãîðèòìà ïðîöåäóðíîé ãåíåðàöèè èãðîâîãî óðîâíÿ, êîòîðûé
ñòðîèòñÿ èç êëåòîê â çàâèñèìîñòè îò ðàçëè÷íûõ âàðèàíòîâ
ïîñòðîåíèÿ óðîâíÿ – ñ ÷åòêèìè è ñâîáîäíûìè ãðàíèöàìè, ôîð-
ìèðîâàíèÿ ñàìèõ êëåòîê ñ âîçìîæíûìè âàðèàíòàìè âûõîäîâ,
ïîñòðîåíèÿ èõ íàáîðà è ðåàëèçàöèè ïðîõîäîâ ìåæäó ñîñåäíèìè
êëåòêàìè. Ðåàëèçàöèÿ ïðåäëîæåííîãî àëãîðèòìà ïðîöåäóðíîé
ãåíåðàöèè óðîâíÿ, ïîñòðîåííîãî íà êëåòêàõ, ïîçâîëèò ñîçäàòü
óíèâåðñàëüíóþ ïðîãðàììó ôîðìèðîâàíèÿ ðàçëè÷íûõ óðîâíåé
(êàðò) è ìîæåò áûòü â äàëüíåéøåì èíòåãðèðîâàíà â èãðó,
÷òî ïîçâîëÿåò çíà÷èòåëüíî ñýêîíîìèòü âðåìÿ è ðåñóðñû.

Êëþ÷åâûå ñëîâà: ïðîöåäóðíàÿ ãåíåðàöèÿ êîíòåíòà,
êîìïüþòåðíàÿ èãðà, àëãîðèòì, óðîâåíü èãðû, óíèâåðñàëüíûå
èãðîâûå ïðîãðàììû.

About procedural generation of the content and its use at the creation of computer games

17ISSN 2521-6406, Kompûterne modelûvannâ: analiz, upravlinnâ, optimizaciâ, 2018, No. 1, pp. 12-17

ABOUT PROCEDURAL GENERATION OF THE CONTENT
AND ITS USE AT THE CREATION OF COMPUTER
GAMES

Kodola G.N., Denysiuk O.R., Khrebet M.A.

Ukrainian State University of Chemical Technology, Dnipro,
Ukraine

Procedural generation of content is crucial when creating
various elements of computer games, such as game levels, buildings,
textures, weapons, faces of non-player characters, trees, bushes, etc.
Procedural generation is understood as a process of automatic creation
of various parts of a game by mixing various input data. In the paper
this process is demonstrated by the example of modeling of a room
with different dimensions and different number of outputs. In case of
proper implementation, it is possible to base more than 90% of a
game on procedural generation of content, which saves a significant
amount of memory used for content storage. The paper presents a
brief overview of the first systems of game generation, their development
path from participation in the creation of small levels to participation
in the creation of whole games. One of the first games based on the
use of procedural generation was Rogue, which spawned a whole
genre called roguelike. The paper considers examples of the successful
application of various procedural generation algorithms in games of
different genres such as: complex dynamic relationships in Crusader
Kings II; unique enemies in Shadow of Mordor; procedural generation
of the world in Civilization. Examples of use of procedural generation
in other spheres, such as modeling 3D objects, or work of artists, are
given. The algorithm for procedural generation of the game level is
developed. A level is constructed from the cells depending on various
options for constructing the level – with clear and free boundaries,
the formation of the cells with possible output options, constructing
their set and implementing the passages between neighboring cells.
The implementation of the proposed algorithm for procedural
generation of a level built on cells will allow creating a universal
program for the formation of various levels (maps) and can be further
integrated into the game, which saves considerable time and resources.

Keywords: procedural content generation, computer game,
algorithm, game level, universal game programs.

REFERENCES

1. Browne C. Evolutionary Game Design. Berlin: Spring-
er, 2011. 122 p.

2. Hom V., Marks J. Automatic Design of Balanced Board
Games. Proceedings of the Third Artificial Intelligence and In-
teractive Digital Entertainment Conference, 2007, pp.25-30.

3. Togelius J., Schmidhuber J. An Experiment in Auto-
matic Game Design. IEEE Symposium on Computational Intel-
ligence and Games, 2008, pp.111-118.

4. Cook M., Colton S. Multi-Faceted Evolution Of Sim-
ple Arcade Games. IEEE Conference on Computational Intelli-
gence and Games, 2011, pp.289-296.

5. Shaker N., Togelius J., Nelson Mark J. Procedural
Content Generation in Games. Springer, 2016. 218 p.

6. Texturing and Modeling: A Procedural Approach, Third
Edition. Ebert David S., Musgrave F. Kenton, Peachey D. and
etc. Morgan Kaufmann, 2002. 688 p.

7. Hendrikx M., Meijer J. S., Van Der Velden A. I. Proce-
dural Content Generation for Games: A Survey. ACM Transac-
tions on Multimedia Computing, Communications, and Appli-
cations, 2013, Vol. 9, No. 1, pp.1-22.

8. Togelius J., Yannakakis G.N., Stanley K.O., Browne C.
Search-Based Procedural Content Generation: A Taxonomy and
Survey. IEEE Transactions on Computational Intelligence and
AI in Games, 2011, Vol. 3, No. 3, pp.172-186.

9. Yannakakis G.N. Experience-Driven Procedural Con-
tent Generation. IEEE Transactions on Affective Computing,
2011, Vol. 2, No. 3, pp.147-161.

10. Sorenson N. A Generic Approach to Challenge Mod-
eling for the Procedural Creation of Video Game Levels. IEEE
Transactions on Computational Intelligence and AI in Games,
2011, Vol. 3, No. 3, pp.229-244.

11. Martin A. Evolving 3D Buildings for the Prototype
Video Game Subversion. Proceedings of the 2010 International
Conference on Applications of Evolutionary Computation, 2010,
Vol. 6024, pp.111-120.

12. Ashlock D. Search-Based Procedural Generation of
Maze-Like Levels. IEEE Transactions on Computational Intel-
ligence and AI in Games, 2011, Vol. 3, No. 3, pp.260-273.

